Research Article
A Method of CT Image Denoising Based on Residual Encoder-Decoder Network
Table 3
PSNR and SSIM in experiments.
| Number | Index | LDCT image | WGAN [23] | RED-CNN [28] | Proposed algorithm |
| a | PSNR/dB | 25.375 | 28.346 | 28.783 | 30.245 | SSIM | 0.768 | 0.912 | 0.921 | 0.942 |
| b | PSNR/dB | 24.653 | 26.398 | 29.012 | 29.374 | SSIM | 0.731 | 0.892 | 0.901 | 0.911 |
| c | PSNR/dB | 24.987 | 29.321 | 30.876 | 31.238 | SSIM | 0.763 | 0.924 | 0.932 | 0.953 |
| d | PSNR/dB | 23.826 | 27.873 | 28.987 | 30.872 | SSIM | 0.711 | 0.865 | 0.912 | 0.934 |
| e | PSNR/dB | 30.145 | 32.146 | 31.273 | 31.698 | SSIM | 0.863 | 0.962 | 0.920 | 0.925 |
| f | PSNR/dB | 27.836 | 30.124 | 30.023 | 30.836 | SSIM | 0.792 | 0.845 | 0.823 | 0.912 |
| | PSNR/dB | 26.834 | 29.834 | 29.867 | 31.345 | SSIM | 0.723 | 0.835 | 0.844 | 0.902 |
| h | PSNR/dB | 26.214 | 30.013 | 29.839 | 31.314 | SSIM | 0.719 | 0.862 | 0.843 | 0.909 |
| i | PSNR/dB | 22.245 | 26.215 | 27.831 | 30.134 | SSIM | 0.712 | 0.821 | 0.873 | 0.901 |
| Average | PSNR/dB | 25.791 | 28.919 | 29.610 | 30.784 | SSIM | 0.75 | 0.876 | 0.885 | 0.916 |
|
|