Research Article
A Fact-Finding Procedure Integrating Machine Learning and AHP Technique to Predict Delayed Diagnosis of Bladder Patients with Hematuria
Table 4
Performance results of classifiers.
| | Classifier | Algorithms | Accuracy, μ/σ | Sensitivity, μ/σ | Specificity, μ/σ | AUC, μ/σ |
| | Without AdaBoost | C4.5 | 0.859/0.014 | 0.843/0.003 | 0.858/0.016 | 0.871/0.042 | | RF | 0.879/0.071 | 0.875/0.045 | 0.8720.081 | 0.942/0.048 | | SVM | 0.746/0.007 | 0.752/0.005 | 0.769/0.040 | 0.705/0.008 | | LGR | 0.788/0.011 | 0.799/0.013 | 0.802/0.021 | 0.854/0.011 | | MLP | 0.742/0.079 | 0.720/0.048 | 0.709/0.127 | 0.775/0.104 |
| | With AdaBoost | C4.5 | 0.856/0.088 | 0.825/0.109 | 0.856/0.088 | 0.915/0.064 | | RF | 0.881/0.066 | 0.857/0.062 | 0.881/0.066 | 0.943/0.045 | | SVM | 0.743/0.011 | 0.722/0.008 | 0.743/0.001 | 0.762/0.010 | | LGR | 0.791/0.002 | 0.802/0.025 | 0.791/0.003 | 0.828/0.008 | | MLP | 0.751/0.088 | 0.791/0.029 | 0.752/0.087 | 0.786/0.111 |
|
|