Research Article
[Retracted] Hippocampus Segmentation Method Based on Subspace Patch-Sparsity Clustering in Noisy Brain MRI
Table 1
Quantitative results for comparison models in different noises.
| σ | | SSC | LRR | Fuzzy GMM | LSM | U-Net | Proposed |
| 5 | FNR | 0.461 | 0.407 | 0.461 | 0.512 | 0.523 | 0.453 | RSE | 0.082 | 0.089 | 0.099 | 0.182 | 0.181 | 0.089 | DSC | 0.761 | 0.808 | 0.891 | 0.782 | 0.831 | 0.903 |
| 10 | FNR | 0.357 | 0.543 | 0.504 | 0.516 | 0.621 | 0.707 | RSE | 0.075 | 0.087 | 0.098 | 0.078 | 0.086 | 0.060 | DSC | 0.682 | 0.836 | 0.718 | 0.805 | 0.816 | 0.836 |
| 20 | FNR | 0.316 | 0.593 | 0.623 | 0.485 | 0.707 | 0.718 | RSE | 0.068 | 0.067 | 0.070 | 0.072 | 0.074 | 0.064 | DSC | 0.579 | 0.531 | 0.690 | 0.734 | 0.752 | 0.792 |
| 30 | FNR | 0.297 | 0.282 | 0.317 | 0.378 | 0.322 | 0.252 | RSE | 0.050 | 0.063 | 0.052 | 0.036 | 0.060 | 0.044 | DSC | 0.508 | 0.471 | 0.523 | 0.658 | 0.680 | 0.697 |
|
|