Research Article
Zero-Watermarking Algorithm for Medical Image Based on VGG19 Deep Convolution Neural Network
Table 1
Experimental results under ripple distortion attack.
| ā | Distortion quantity (%) | 150 | 300 | 450 | 600 | 750 |
| Medical image A | PSNR (dB) | 12.7889 | 11.9036 | 11.5765 | 11.2648 | 11.0596 | NC | 0.87595 | 0.81021 | 0.81021 | 0.81106 | 0.74818 |
| Medical image B | PSNR (dB) | 16.6378 | 12.8092 | 12.8092 | 11.7588 | 11.0855 | NC | 0.87595 | 0.87595 | 0.87595 | 0.68929 | 0.75075 |
| Medical image C | PSNR (dB) | 21.8267 | 17.8745 | 15.8378 | 14.6473 | 13.8828 | NC | 0.81363 | 0.74989 | 0.81163 | 0.65842 | 0.59668 |
| Medical image D | PSNR (dB) | 21.3456 | 17.7586 | 16.1687 | 14.8927 | 14.0789 | NC | 0.87509 | 0.87138 | 0.81021 | 0.81392 | 0.81392 |
| Medical image E | PSNR (dB) | 28.1822 | 25.2023 | 23.3165 | 21.9457 | 20.5296 | NC | 0.87823 | 0.75104 | 0.68987 | 0.68872 | 0.68872 |
|
|