Research Article
Zero-Watermarking Algorithm for Medical Image Based on VGG19 Deep Convolution Neural Network
Table 3
Experimental results under extrusion distortion attack.
| ā | Distortion quantity (%) | 10 | 30 | 50 | 70 | 90 |
| Medical image A | PSNR (dB) | 13.0494 | 11.4873 | 10.6621 | 10.2615 | 9.9121 | NC | 1.0 | 1.0 | 1.0 | 0.9354 | 0.9354 |
| Medical image B | PSNR (dB) | 21.7239 | 16.4862 | 14.1855 | 12.7081 | 11.6212 | NC | 1.0 | 0.84222 | 0.7815 | 0.81049 | 0.81278 |
| Medical image C | PSNR (dB) | 26.561 | 19.8342 | 17.1758 | 15.695 | 14.9073 | NC | 0.93826 | 0.93826 | 0.74818 | 0.74818 | 0.81163 |
| Medical image D | PSNR (dB) | 24.4511 | 18.0799 | 15.8822 | 14.692 | 14.0065 | NC | 0.93626 | 0.81021 | 0.78076 | 0.78076 | 0.87395 |
| Medical image E | PSNR (dB) | 32.0185 | 26.229 | 23.5813 | 21.8296 | 20.504 | NC | 0.9394 | 0.9394 | 0.9394 | 0.87566 | 0.87766 |
|
|