Research Article

Comparative Analysis of Skin Cancer (Benign vs. Malignant) Detection Using Convolutional Neural Networks

Table 3

Layers and parameters of ResNet50.

Type of layersOutcome structureNumber of parameters

Functional ResNet50(Nil, 7 × 7 × 2048)23587712
Conv_2 (2d)(Nil, 5 × 5 × 64)1179712
Conv_3 (2d)(Nil, 3 × 3 × 64)36928
Pooling (max)(Nil, 1 × 1 × 64)Null
Layer flatten(Nil, 64)Null
module_wrapper_8(Nil, 512)33280
module_wrapper_9(Nil, 256)131328
module_wrapper_10(Nil, 128)32896
module_wrapper_11(Nil, 64)8256
module_wrapper_12(Nil, 32)2080
module_wrapper_13(Nil, 16)528
module_wrapper_14(Nil, 8)136
module_wrapper_15(Nil, 2)18
Total number of parameters: 25,012,074; trainable parameters:
24,959,274; nontrainable parameters: 53,120