Research Article
[Retracted] An ECG Heartbeat Classification Method Based on Deep Convolutional Neural Network
Table 3
The structure of the proposed CNN classifier.
| | Type | Biases | Kernel size | Stride | Output size |
| Layer 1 | Convolution | 16 | 3 | 1 | (185, 16) | Layer 2 | Convolution | 16 | 3 | 1 | (183, 16) | Layer 3 | Max pooling | — | 2 | 2 | (91, 16) | Layer 4 | Convolution | 32 | 3 | 1 | (89, 32) | Layer 5 | Convolution | 32 | 3 | 1 | (87, 32) | Layer 6 | Max pooling | — | 2 | 2 | (43, 32) | Layer 7 | Convolution | 64 | 3 | 1 | (41, 64) | Layer 8 | Convolution | 64 | 3 | 1 | (39, 64) | Layer 9 | Max pooling | — | 2 | 2 | (19, 64) | Layer 10 | Convolution | 128 | 3 | 1 | (17, 128) | Layer 11 | Convolution | 128 | 3 | 1 | (15, 128) | Layer 12 | Convolution | 128 | 3 | 1 | (13, 128) | Layer 13 | Max pooling | — | 2 | 2 | (6, 128) | Layer 14 | Flatten | — | — | — | (768) | Layer 15 | Fully connected | 30 | — | — | (30) | Layer 16 | Fully connected | 5 | — | — | (5) |
|
|