Research Article
Eye Movement Signal Classification for Developing Human-Computer Interface Using Electrooculogram
Table 1
Performance accuracy of convolution features using ERNN.
| S. no. | Sub. | Hidden neuron | Training time (sec) | Testing time (sec) | Recognizing accuracy | Max | Min | Mean | Std. |
| 1 | S1 | 8 | 5.31 | 0.92 | 93.64 | 83.64 | 90.73 | 2.60 | 2 | S2 | 8 | 5.12 | 0.94 | 93.64 | 87.27 | 90.86 | 2.03 | 3 | S3 | 8 | 5.38 | 0.91 | 94.55 | 85.45 | 90.94 | 2.46 | 4 | S4 | 8 | 5.43 | 0.88 | 93.64 | 86.36 | 90.90 | 2.13 | 5 | S5 | 8 | 5.42 | 0.93 | 93.78 | 85.45 | 90.58 | 2.32 | 6 | S6 | 8 | 5.45 | 0.84 | 93.64 | 86.36 | 90.59 | 2.23 | 7 | S7 | 8 | 5.43 | 0.94 | 93.64 | 85.56 | 90.77 | 2.48 | 8 | S8 | 8 | 5.32 | 0.92 | 93.64 | 86.36 | 90.90 | 2.22 | 9 | S9 | 8 | 5.34 | 0.86 | 94.55 | 85.45 | 90.91 | 2.15 | 10 | S10 | 8 | 5.30 | 0.89 | 93.64 | 84.55 | 90.31 | 2.41 | 11 | S11 | 8 | 5.32 | 0.96 | 93.64 | 86.36 | 90.58 | 2.17 | 12 | S12 | 8 | 5.41 | 0.93 | 95.55 | 88.18 | 91.91 | 2.04 | 13 | S13 | 8 | 5.39 | 0.95 | 93.64 | 86.36 | 90.90 | 1.93 | 14 | S14 | 8 | 5.34 | 0.92 | 93.64 | 86.36 | 91.12 | 2.12 | 15 | S15 | 8 | 5.34 | 0.95 | 94.55 | 87.09 | 90.71 | 1.92 | 16 | S16 | 8 | 5.43 | 0.89 | 94.55 | 85.56 | 90.77 | 2.20 | 17 | S17 | 8 | 5.52 | 0.90 | 93.64 | 86.36 | 90.68 | 2.00 | 18 | S18 | 8 | 5.42 | 0.92 | 93.64 | 85.56 | 90.77 | 2.22 | 19 | S19 | 8 | 5.42 | 0.97 | 93.64 | 87.27 | 90.82 | 2.09 | 20 | S20 | 8 | 5.40 | 0.99 | 94.55 | 86.36 | 90.64 | 1.94 |
|
|