Research Article
Eye Movement Signal Classification for Developing Human-Computer Interface Using Electrooculogram
Table 2
Performance accuracy of convolution features using DTDNN.
| S. no. | Sub. | Hidden neuron | Mean training time (sec) | Mean testing time (sec) | Recognizing accuracy | Max | Min | Mean | Std. |
| 1 | S1 | 8 | 3.51 | 0.67 | 93.64 | 86.36 | 90.41 | 2.14 | 2 | S2 | 8 | 3.56 | 0.61 | 93.72 | 85.56 | 90.49 | 1.88 | 3 | S3 | 8 | 3.57 | 0.63 | 93.74 | 86.36 | 90.40 | 2.25 | 4 | S4 | 8 | 3.70 | 0.65 | 92.74 | 86.36 | 90.58 | 1.79 | 5 | S5 | 8 | 3.48 | 0.62 | 93.64 | 85.45 | 90.32 | 2.83 | 6 | S6 | 8 | 3.59 | 0.76 | 93.64 | 85.56 | 90.13 | 1.99 | 7 | S7 | 8 | 3.62 | 0.62 | 93.64 | 85.45 | 90.59 | 2.63 | 8 | S8 | 8 | 3.62 | 0.62 | 93.64 | 86.36 | 90.49 | 1.64 | 9 | S9 | 8 | 3.72 | 0.65 | 93.64 | 85.45 | 90.34 | 2.00 | 10 | S10 | 8 | 3.59 | 0.63 | 93.64 | 86.36 | 90.23 | 2.31 | 11 | S11 | 8 | 3.44 | 0.61 | 94.55 | 85.56 | 90.47 | 2.23 | 12 | S12 | 8 | 3.55 | 0.63 | 94.55 | 88.18 | 91.76 | 1.79 | 13 | S13 | 8 | 3.71 | 0.63 | 94.55 | 86.36 | 90.63 | 2.13 | 14 | S14 | 8 | 3.92 | 0.61 | 94.55 | 85.45 | 90.86 | 2.26 | 15 | S15 | 8 | 3.68 | 0.63 | 93.64 | 86.36 | 90.50 | 1.97 | 16 | S16 | 8 | 3.60 | 0.63 | 94.55 | 85.55 | 90.59 | 2.08 | 17 | S17 | 8 | 3.82 | 0.73 | 93.64 | 86.36 | 90.54 | 1.87 | 18 | S18 | 8 | 3.65 | 0.70 | 93.64 | 86.36 | 90.59 | 2.17 | 19 | S19 | 8 | 3.67 | 0.73 | 93.64 | 85.45 | 90.58 | 1.79 | 20 | S20 | 8 | 3.84 | 0.73 | 94.55 | 86.36 | 90.73 | 2.50 |
|
|