Research Article
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
Table 1
Network parameter configuration.
| Layers | Input | Kernel number | Kernel size | Stride | Pad | Output | W | H | D | W | H | D |
| Input | | | | | | | | 28 | 28 | 1 | conv1 | 28 | 28 | 1 | 6 | 5 | 1 | 0 | 24 | 24 | 6 | cccp1 | 24 | 24 | 6 | 6 | 1 | 1 | 0 | 24 | 24 | 6 | cccp2 | 24 | 24 | 6 | 6 | 1 | 1 | 0 | 24 | 24 | 6 | maxpool1 | 24 | 24 | 6 | | 2 | 2 | 0 | 12 | 12 | 6 | conv2 | 12 | 12 | 6 | 12 | 5 | 1 | 0 | 8 | 8 | 12 | cccp3 | 8 | 8 | 12 | 12 | 1 | 1 | 0 | 8 | 8 | 12 | cccp4 | 8 | 8 | 12 | 12 | 1 | 1 | 0 | 8 | 8 | 12 | avgpool2 | 8 | 8 | 12 | | 2 | 2 | 0 | 4 | 4 | 12 | conv3 | 4 | 4 | 24 | 24 | 4 | 1 | 0 | 1 | 1 | 24 | cccp5 | 1 | 1 | 24 | 24 | 1 | 1 | 0 | 1 | 1 | 24 | cccp6 | 1 | 1 | 24 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | Avgpool3 | 1 | 1 | 2 | | 2 | 2 | 0 | 1 | 1 | 2 | Softmax-loss | 1 | 1 | 2 | | | | | 1 | 1 | 2 |
|
|