Research Article
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
Table 1
Network parameter configuration.
| | Layers | Input | Kernel number | Kernel size | Stride | Pad | Output | | W | H | D | W | H | D |
| | Input | | | | | | | | 28 | 28 | 1 | | conv1 | 28 | 28 | 1 | 6 | 5 | 1 | 0 | 24 | 24 | 6 | | cccp1 | 24 | 24 | 6 | 6 | 1 | 1 | 0 | 24 | 24 | 6 | | cccp2 | 24 | 24 | 6 | 6 | 1 | 1 | 0 | 24 | 24 | 6 | | maxpool1 | 24 | 24 | 6 | | 2 | 2 | 0 | 12 | 12 | 6 | | conv2 | 12 | 12 | 6 | 12 | 5 | 1 | 0 | 8 | 8 | 12 | | cccp3 | 8 | 8 | 12 | 12 | 1 | 1 | 0 | 8 | 8 | 12 | | cccp4 | 8 | 8 | 12 | 12 | 1 | 1 | 0 | 8 | 8 | 12 | | avgpool2 | 8 | 8 | 12 | | 2 | 2 | 0 | 4 | 4 | 12 | | conv3 | 4 | 4 | 24 | 24 | 4 | 1 | 0 | 1 | 1 | 24 | | cccp5 | 1 | 1 | 24 | 24 | 1 | 1 | 0 | 1 | 1 | 24 | | cccp6 | 1 | 1 | 24 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | | Avgpool3 | 1 | 1 | 2 | | 2 | 2 | 0 | 1 | 1 | 2 | | Softmax-loss | 1 | 1 | 2 | | | | | 1 | 1 | 2 |
|
|