Research Article

[Retracted] Task-Oriented Intelligent Solution to Measure Parkinson’s Disease Tremor Severity

Table 3

Classifiers’ hyperparameters search spaces.

ClassifierHyperparameters search spaces

ANN-MLPbatch_size: [32, 64, 512]
Epochs: [200, 300]
Neurons: Integer (60, 100)
Optimizer: [SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam]
Activation: [relu, tanh, selu, elu, exponential]

KNNn_neighbors: Integer (1, 20)
Weights: [Distance, uniform]
Algorithm: [Brute, ball_tree, kd_tree]
Metric: [Minkowski, euclidean, manhattan]
leaf_size: Integer (1, 20)
p: Integer(1, 2)

RFn_estimators: Integer(10, 250)
max_features: Integer(1, 102)
max_depth: Integer(5, 100)
min_samples_split: Integer(2, 20)
min_samples_leaf: Integer(1, 20)
Criterion: [gini, entropy]

DTmax_features: Integer(1, 102)
max_depth: Integer(5, 100)
min_samples_split: Integer(2, 20)
min_samples_leaf: Integer(1, 20)
Criterion: [gini, entropy]

LRPenalty: [l2, none]
C: [1e − 2, 1e − 1, 1e0, 1e1]
Solver: [Newton-cg, lbfgs, sag, saga]
max_iter: Integer(1, 1000)

SVMC: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Gamma: [0.1, 0.01, 0.001]
Degree: (1, 5)
Kernel: [Linear, poly, rbf, sigmoid]