Research Article
[Retracted] Performance Analysis of Deep Learning Models for Binary Classification of Cancer Gene Expression Data
Table 4
Architectural parameter setting for 1DCNN.
| Dataset | Dense layer size | No. of filters, filter size | Train loss | Validation loss |
| Colon (ANOVA) | 100 | 32,128 | 1.21e − 4 | 8.44 | Colon (IG) | 40 | 32,64 | 1.5e − 8 | 36.4 | Pancreatic (ANOVA) | 40 | 64,200 | 1.22e − 5 | 7.5 | Pancreatic (IG) | 40 | 64,200 | 1.11e − 10 | 6.66 | Breast (ANOVA) | 50 | 32,200 | 7.68e − 10 | 10.2 | Breast (IG) | 40 | 32, 128 | 0 | 1.06 | Lung (ANOVA) | 50 | 64,200 | 2.2e − 10 | 2.55 | Lung (IG) | 50 | 64,200 | 0.34e − 6 | 1.11 |
|
|