Research Article
[Retracted] Performance Analysis of Deep Learning Models for Binary Classification of Cancer Gene Expression Data
Table 5
Architectural parameter setting for 2DCNN.
| Dataset | Dense layer size | No. of filters, filter size | Train loss | Validation loss |
| Colon (ANOVA) | 50 | 64 (9,9) | 9.8e − 10 | 15.26 | Colon (IG) | 20 | 32 (5,5) | 0.112 | 6.42 | Pancreatic (ANOVA) | 40 | 128 (5,5) | 2.45e − 6 | 10.34 | Pancreatic (IG) | 40 | 128 (5,5) | 1.08e − 9 | 5.24 | Breast (ANOVA) | 100 | 64 (5,5) | 6.9e − 1 | 0.67 | Breast (IG) | 50 | 64 (5,5) | 2.23e − 5 | 7.55 | Lung (ANOVA) | 50 | 64 (7,7) | 2.11e − 7 | 10.1 | Lung (IG) | 40 | 64 (7,7) | 1.23e − 11 | 6.34 |
|
|