Research Article
[Retracted] Automated Detection of Rehabilitation Exercise by Stroke Patients Using 3-Layer CNN-LSTM Model
Algorithm 1
Data preprocessing for training.
| | Input: rehabilitation exercise, labelled dataset categories | | | Preprocessing: | | (1) | Categories ⟵ Dataset categories | | (2) | Apply data augmentation on Categories | | (3) | for each_Image in Categories | | | a: Image_array ⟵ (Image, “gray”) | | | b: Drop null values | | | c: New_array = Resize (Image_array, (256, 256)) end for | | | Preparation: Training_data = [ ] | | (4) | For each_class in Categories | | | a: class_num ⟵ Categories (each_class) | | | b: Training_data ⟵ (New_array, class_num) end for | | (5) | Create Training_data | | (6) | Shuffle randomly (Training_data) |
|