Research Article

[Retracted] Automated Detection of Rehabilitation Exercise by Stroke Patients Using 3-Layer CNN-LSTM Model

Algorithm 2

3-layer CNN-LSTM model for the detection of rehabilitation exercise.
Input: unobserved exercise image
Initialization:
(1)Zm,n array of image (m rows, n column) at convolution layer 1
(2)Fi, j filter (i rows, j column)
(3) resultant array obtained after convolution
(4) output array after removing negative values
(5) sum of product operation
(6)FM feature map function
(7) output array at 2nd convolution layer
(8)F_Ym, n output at 3rd convolution layer
Preparation:
(1)Load CNN model
(2)Load trained LSTM model
Steps:
(3)CNN ⟵ New_array (Zi)
(4)Load FM in Conv1: (convolution layer 1), filter_size (5, 5)
Number of rows and columns (m, n)
 a: Fi, j × Zm,n No. of filters ⟵ 64
 b:
 c: Max_pooling (4, 4)
 d: Dropout (0.5)
(5)Load FM in Conv2: (convolution layer 2), filter size (3, 3)
 a: Fi, j × Ym,n No. of filters ⟵ 128
 b:
 c: Max_pooling (2, 2)
 d: Dropout (0.5)
(6): Load FM in Conv3: (convolution layer 3), filter size (3, 3)
Fi, j × Qm,n No. of filters ⟵ 256
 b: F_Ym, n ⟵ max (0, F_0m, n)
 c: Max_pooling ⟵ 2 × 2
(7)LSTM (64) ⟵ F_Ym, n after Conv3
(8)FC Layer ⟵ Dense (64)
(9)Predicted values ⟵ Dense (64)
(10)Pass the predicted values through the BN layer
(11)Calculate Loss ⟵ (ground_truth_value–predicted_value)
(12)SoftMax function ⟵ predicted exercise
Output: display and label the predicted exercise