Research Article

Using Machine Learning to Predict the Requirement for Revascularization in Patients with Chest Pain in the Emergency Department

Table 1

Features for analysis.

 Features

Demographic data1Gender
2Age

Clinical data at emergency or outpatient department3SBP
4DBP
5HR
6Arrhythmia
7ST-segment changes
8Killip classification

History9CAD
10MI
11PCI
12CABG
13Chest pain
14Diabetes
15Hypertension
16Stroke
17Hyperlipidemia
18PAD
19Smoking
20Drinking
21Family history of CHD

Laboratory data at emergency or outpatient department22WBC
23Monocyte
24Lymphocyte
25RBC
26HBG
27HCT
28PLT
29FBG
30Hs-CRP
31HCY
32Uric acid
33CRE
34BUN
35TC
36TG
37LDL-C
38HDL-C
39LDH
40Cardiac markers change

Calculation data41NLR

SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CHD, coronary heart disease; MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; PAD, peripheral arterial disease; WBC, white blood cell; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; PLT, platelet; FBG, fasting blood glucose; HCY, homocysteine; CRE, creatinine; BUN, blood urea nitrogen; TC, total cholesterol; TG, triglyceride; LDL, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; NLR, neutrophil-to-lymphocyte ratio.