Research Article
Automated Detection of Infection in Diabetic Foot Ulcer Images Using Convolutional Neural Network
Table 2
DFINET layer parameter details.
| Layer type | Layer parameters Kernel size (KS), number of filters (NF) |
| Conv_1 | KS = 7 × 7, NF = 64 | Max_pool_1 | KS = 3 × 3, Stride = 2 | Conv_2 | KS = 3 × 3, NF = 64 | Conv_3 | KS = 3 × 3, NF = 128 | Max_pool_2 | KS = 3 × 3, Stride = 2 | Conv_4a | KS = 3 × 3, NF = 128 | Conv_4b | KS = 1 × 1, NF = 128 | Max_pool_3 | KS = 3 × 3, Stride = 2 | Conv_5a | KS = 3 × 3, NF = 128 | Conv_5b | KS = 1 × 1, NF = 128 | Conv_6a | KS = 3 × 3, NF = 256 | Conv_6b | KS = 1 × 1, NF = 256 | Max_pool_4 | KS = 3 × 3, Stride = 2 | Conv_7a | KS = 3 × 3, NF = 256 | Conv_7b | KS = 1 × 1, NF = 256 | Max_pool_5 | KS = 7 × 7, Stride = 2 | FC_1 | 100 | Dropout | Probability = 0.3 | FC_1 | 2 | Total number of parameters | 14, 895, 440 |
|
|