Research Article

Automated Detection of Infection in Diabetic Foot Ulcer Images Using Convolutional Neural Network

Table 2

DFINET layer parameter details.

Layer typeLayer parameters
Kernel size (KS), number of filters (NF)

Conv_1KS = 7 × 7, NF = 64
Max_pool_1KS = 3 × 3, Stride = 2
Conv_2KS = 3 × 3, NF = 64
Conv_3KS = 3 × 3, NF = 128
Max_pool_2KS = 3 × 3, Stride = 2
Conv_4aKS = 3 × 3, NF = 128
Conv_4bKS = 1 × 1, NF = 128
Max_pool_3KS = 3 × 3, Stride = 2
Conv_5aKS = 3 × 3, NF = 128
Conv_5bKS = 1 × 1, NF = 128
Conv_6aKS = 3 × 3, NF = 256
Conv_6bKS = 1 × 1, NF = 256
Max_pool_4KS = 3 × 3, Stride = 2
Conv_7aKS = 3 × 3, NF = 256
Conv_7bKS = 1 × 1, NF = 256
Max_pool_5KS = 7 × 7, Stride = 2
FC_1100
DropoutProbability = 0.3
FC_12
Total number of parameters14, 895, 440