Research Article
Automated Detection of Infection in Diabetic Foot Ulcer Images Using Convolutional Neural Network
Table 4
Performance of DFINET in infection classification from DFU images.
| Model/classifier | Train/test split | ACC | SEN | SPE | PRE | F1-score | MCC |
| GoogLeNet | 90/10 | 75.34 | 73.27 | 77.82 | 79.80 | 76.39 | 0.50 | VGG16 | 90/10 | 83.11 | 81.45 | 84.95 | 85.74 | 83.54 | 0.66 | AlexNet | 90/10 | 76.74 | 74.96 | 78.79 | 80.31 | 77.54 | 0.53 | DFINET | 90/10 | 91.98 | 90.57 | 93.49 | 93.72 | 92.12 | 0.84 | DFINET | 80/20 | 89.29 | 88.46 | 90.63 | 93.88 | 91.09 | 0.77 | DFINET | 70/30 | 87.50 | 92.78 | 80.28 | 86.54 | 89.55 | 0.74 | Ensemble CNN [22] | 90/10 | 72.70 | 70.90 | 74.40 | 73.50 | 72.20 | 0.45 | Res7Net [23] | 90/10 | 80.00 | 80.40 | 80.20 | 79.70 | 79.80 | 0.60 | Inception ResNetV2 [22] | 90/10 | 67.60 | 68.80 | 66.40 | 67.20 | 68.00 | 0.35 | Bayes Net [22] | 90/10 | 63.90 | 61.90 | 66.00 | 65.30 | 62.20 | 0.29 |
|
|