Research Article
Glaucoma Detection Using Image Processing and Supervised Learning for Classification
Table 3
Comparison of performance of proposed method for PSGIMSR with benchmark data sets.
| Data set | Technique used | Accuracy | Precision | Sensitivity | Specificity | F1 score |
| PSGIMSR (D1) | GoogleNet | 86.86 | 90.40 | 81.44 | 91.93 | 0.8568 | VGG | 87.04 | 89.80 | 82.08 | 91.54 | 0.8576 | ResNet | 88.60 | 91.60 | 83.72 | 93.03 | 0.8748 | Proposed algorithm | 91.11 | 94.18 | 86.55 | 95.20 | 0.9021 | DRIONS-DB (D2) | GoogleNet | 90.90 | 90.80 | 89.37 | 92.22 | 0.9007 | VGG | 91.63 | 90.40 | 91.12 | 92.05 | 0.9076 | ResNet | 92.72 | 92.40 | 91.67 | 93.62 | 0.9203 | Proposed algorithm | 95.63 | 95.60 | 94.84 | 96.30 | 0.9521 | HRF (D3) | GoogleNet | 95.33 | 94.67 | 95.94 | 94.73 | 0.9530 | VGG | 96.00 | 97.33 | 94.80 | 97.26 | 0.9605 | ResNet | 96.67 | 96.00 | 97.29 | 96.05 | 0.9664 | Proposed algorithm | 98.67 | 97.33 | 100 | 97.40 | 0.9864 | Data set | Technique used | Accuracy | Precision | Sensitivity | Specificity | F1 score | DRISHTI-GS (D4) | GoogleNet | 92.07 | 89.03 | 85.71 | 95.05 | 0.8734 | VGG | 91.08 | 87.09 | 84.37 | 94.20 | 0.8571 | ResNet | 93.06 | 90.96 | 87.03 | 95.91 | 0.8895 | Proposed algorithm | 95.64 | 96.12 | 90.30 | 98.23 | 0.9312 | Combined (D5) | GoogleNet | 83.40 | 87.50 | 75 | 90.69 | 0.8076 | VGG | 83.73 | 86.87 | 75.81 | 90.38 | 0.8097 | ResNet | 85.56 | 89.16 | 77.81 | 92.06 | 0.8310 | Proposed algorithm | 88.96 | 93.95 | 81.26 | 95.53 | 0.8714 |
|
|
Bold represents the proposed algorithm values.
|