Research Article
Using Healthcare Resources Wisely: A Predictive Support System Regarding the Severity of Patient Falls
Table 5
Model performance assessments.
| Dataset | Learner | Accuracy (SD) | F1 (SD) | Precision (SD) | Recall (SD) |
| Training | Multinomial logistic regression (MLR) | 0.442 (0.028) | 0.442 (0.028) | 0.443 (0.029) | 0.443 (0.028) | Naïve Bayes (NB) | 0.461 (0.026) | 0.448 (0.026) | 0.460 (0.028) | 0.472 (0.024) | Random forest (RF) | 0.783 (0.008) | 0.784 (0.007) | 0.785 (0.007) | 0.788 (0.008) | Support vector machine (SVM) | 0.771 (0.008) | 0.771 (0.008) | 0.774 (0.008) | 0.776 (0.009) | eXtreme gradient boosting (XGBoost) | 0.778 (0.006) | 0.779 (0.005) | 0.781 (0.005) | 0.784 (0.005) | Deep learning (DL) | 0.721 (0.016) | 0.720 (0.017) | 0.735 (0.013) | 0.725 (0.019) | Stacking (RF + SVM + XGBoost + DL) | 0.756 (0.014) | 0.754 (0.014) | 0.760 (0.019) | 0.763 (0.015) |
| Test | Multinomial logistic regression | 0.426 | 0.397 | 0.402 | 0.416 | Naïve Bayes | 0.426 | 0.426 | 0.444 | 0.500 | Random forest | 0.844 | 0.850 | 0.839 | 0.875 | Support vector machine | 0.823 | 0.828 | 0.817 | 0.851 | eXtreme gradient boosting | 0.835 | 0.843 | 0.831 | 0.866 | Deep learning | 0.751 | 0.743 | 0.725 | 0.773 | Stacking (RF + SVM + XGBoost + DL) | 0.781 | 0.775 | 0.758 | 0.799 |
|
|
Note. SD denotes standard deviation.
|