Research Article

Cervical Lesion Classification Method Based on Cross-Validation Decision Fusion Method of Vision Transformer and DenseNet

Table 3

Comparison results between this fusion model and other models.

ModelClassesACCF1PPVSENSPECNPV

Vision TransformerCancer0.60000.83500.81360.86000.97800.9846
HSIL0.61840.57260.67440.62100.7190
LSIL0.43660.49840.39120.87780.8282
Negative0.60180.65560.55840.90800.8674

ShuffleNetV2Cancer0.60400.77220.78920.76000.97800.9738
HSIL0.60760.57440.64660.63840.7062
LSIL0.46280.54860.40860.89860.8364
Negative0.63860.62840.64980.87900.8884

MobileNetV3Cancer0.62600.79100.74900.84000.96920.9824
HSIL0.64020.59600.69300.64560.7372
LSIL0.46860.53760.41760.89340.8370
Negative0.65640.70520.61660.91840.8840

EfficientNetV2Cancer0.63600.81600.84060.80000.98240.9780
HSIL0.63460.62180.65120.69820.7268
LSIL0.54460.61580.49560.90640.8584
Negative0.63900.60960.67500.86320.8944

DenseNet161Cancer0.65600.86720.85000.90000.98020.9890
HSIL0.65140.66840.64200.75440.7388
LSIL0.56660.57980.56540.87780.8724
Negative0.64860.63700.66660.87900.8938

OursCancer0.68000.90000.90000.90000.98900.9890
HSIL0.68900.66000.72100.71900.7740
LSIL0.60500.65000.56500.90900.8750
Negative0.63800.65200.62500.89500.8830