Research Article
Cervical Lesion Classification Method Based on Cross-Validation Decision Fusion Method of Vision Transformer and DenseNet
Table 4
Comparison fusion results of different models.
| Model | ω1 | ω2 | ACC |
| MobileNetV3 + ShuffleNetV2 | 0.65 | 0.35 | 0.61 | Vision transformer + ShuffleNetV2 | 0.9 | 0.1 | 0.61 | Vision transformer + MobileNetV3 | 0.3 | 0.7 | 0.61 | ShuffleNetV2 + EfficientNetV2 | 0.1 | 0.9 | 0.65 | MobileNetV3 + DenseNet161 | 0.3 | 0.7 | 0.66 | Vision transformer + EfficientNetV2 | 0.05 | 0.95 | 0.66 | MobileNetV3 + EfficientNetV2 | 0.35 | 0.65 | 0.67 | ShuffleNetV2 + DenseNet161 | 0.1 | 0.9 | 0.67 | EfficientNetV2 + DenseNet161 | 0.4 | 0.6 | 0.68 | Vision Transformer + DenseNet161 | 0.05 | 0.95 | 0.68 |
|
|