Research Article

COVID-19 Risk Prediction for Diabetic Patients Using Fuzzy Inference System and Machine Learning Approaches

Table 1

Performance characteristics of ML techniques on COVID-19 symptoms.

S. noModelAccuracyRecallPrecisionF1 scoreKappa

1Logistic regression0.73910.5030.75360.71950.5995
2AdaBoost classifier0.73240.5490.74330.70930.5908
3CatBoost classifier0.71660.6010.71590.71360.5817
4Light gradient boosting machine0.70410.5570.70310.69970.561
5Gradient boosting classifier0.69680.4830.70520.68160.537
6Extreme gradient boosting0.69350.4730.70370.67570.5303
7Extra trees classifier0.69280.5620.69290.69080.5494
8Decision tree classifier0.69090.590.6970.69220.5501
9Random forest classifier0.69090.5580.68980.68840.5459
10SVM-linear kernel0.67330.4490.7030.6390.4971
11K-neighbor classifier0.65340.4950.64740.64610.485
12Ridge classifier0.64870.3450.48850.55720.4365
13Quadratic discriminant analysis0.51820.4260.53520.50670.3164
14Naive Bayes0.49430.4930.64740.52790.3152