Research Article
COVID-19 Risk Prediction for Diabetic Patients Using Fuzzy Inference System and Machine Learning Approaches
Table 1
Performance characteristics of ML techniques on COVID-19 symptoms.
| S. no | Model | Accuracy | Recall | Precision | F1 score | Kappa |
| 1 | Logistic regression | 0.7391 | 0.503 | 0.7536 | 0.7195 | 0.5995 | 2 | AdaBoost classifier | 0.7324 | 0.549 | 0.7433 | 0.7093 | 0.5908 | 3 | CatBoost classifier | 0.7166 | 0.601 | 0.7159 | 0.7136 | 0.5817 | 4 | Light gradient boosting machine | 0.7041 | 0.557 | 0.7031 | 0.6997 | 0.561 | 5 | Gradient boosting classifier | 0.6968 | 0.483 | 0.7052 | 0.6816 | 0.537 | 6 | Extreme gradient boosting | 0.6935 | 0.473 | 0.7037 | 0.6757 | 0.5303 | 7 | Extra trees classifier | 0.6928 | 0.562 | 0.6929 | 0.6908 | 0.5494 | 8 | Decision tree classifier | 0.6909 | 0.59 | 0.697 | 0.6922 | 0.5501 | 9 | Random forest classifier | 0.6909 | 0.558 | 0.6898 | 0.6884 | 0.5459 | 10 | SVM-linear kernel | 0.6733 | 0.449 | 0.703 | 0.639 | 0.4971 | 11 | K-neighbor classifier | 0.6534 | 0.495 | 0.6474 | 0.6461 | 0.485 | 12 | Ridge classifier | 0.6487 | 0.345 | 0.4885 | 0.5572 | 0.4365 | 13 | Quadratic discriminant analysis | 0.5182 | 0.426 | 0.5352 | 0.5067 | 0.3164 | 14 | Naive Bayes | 0.4943 | 0.493 | 0.6474 | 0.5279 | 0.3152 |
|
|