Research Article

Effects of Data Augmentation with the BNNSMOTE Algorithm in Seizure Detection Using 1D-MobileNet

Table 8

Comparison of multiple approaches’ experimental results on the CHB-MIT dataset.

AuthorsYearMethodsPatientsRec (%)Pre (%)F1 (%)Acc (%)

Khan et al. [34]2012Multiple wavelet scales, LDA583.686.785.191.8
Janjarasjitt [35]2017Wavelet based features, SVM2472.9996.87
Yao et al. [36]2018Attention, BiLSTM2387.3088.2987.7487.80
Wei et al. [37]2019MIDS, WGANs, 1D-CNN2472.1184.00
Yao et al. [38]2019Windowing, IndRNN2488.8088.6988.7188.70
Yuan et al. [39]2019STFT-mConvA2385.0085.6885.3494.34
Hu et al. [40]2020K-means SMOTE, RFS + extra-trees + GBDTs2285.8189.49
Jiang and Zhao [21]2021SMOTE + TomekLink, CSL + SVM2286.3494.00
Boonyakitanont et al. [41]2021CNN, ScoreNet2476.5464.7470.1599.83
Ryu and Joe [42]2021DWT, DenseNet-LSTM2492.9291.7192.3093.28
Zhao et al. [43]2021GAT, focal loss2397.1099.5998.3398.89
Guo et al. [44]2022Isolation forest, time-frequency feature, and easyensemble2495.5592.62
This work2022BNNSMOTE, 1D-MobileNet2087.4697.1791.9099.40

LDA: linear discriminant analysis, MIDS: merger of the increasing and decreasing sequences, WGANs: Wasserstein generative adversarial nets, IndRNN: independently RNN, mConvA: multiconvolutional autoencoder, GBDTs: gradient boosting decision trees, CSL: cost-sensitive learning, DWT: discrete wavelet transform, and GA T: graph attention network.