Research Article
CXR-RefineDet: Single-Shot Refinement Neural Network for Chest X-Ray Radiograph Based on Multiple Lesions Detection
Table 3
Detection results of different methods on VinDr-CXR test set.
| Method | Backbone | Input size | mAP | Inference speed (fps) w/o reparam | Params (M) |
| RetinaNet | ResNet-50 | 512 × 512 | 0.1269 | 3.7 | 36.37 | ResNet-101 | 0.1494 | 3.5 | 55.37 |
| Faster RCNN | ResNet-50 | 512 × 512 | 0.1597 | 3.7 | 41.19 | ResNet-101 | 0.1569 | 3.5 | 60.18 |
| GA-Faster RCNN | ResNet-50 | 512 × 512 | 0.1464 | 3.3 | 41.78 |
| Cascade RCNN | ResNet-50 | 512 × 512 | 0.1512 | 3.3 | 68.97 | ResNet-50-DCN | 0.1613 | 3.2 | 69.55 | ResNet-101 | 0.1631 | 3.1 | 87.96 | ResNet-101-DCN | 0.1560 | 3.0 | 89.24 |
| VFNet | ResNet-50 | 512 × 512 | 0.1413 | 3.6 | 32.51 | ResNet-101 | 0.1505 | 3.4 | 51.51 |
| ATSS | ResNet-50 | 512 × 512 | 0.1478 | 3.7 | 31.92 | ResNet-101 | 0.1538 | 3.5 | 50.91 |
| RefineDet | VGG-16 | 320 × 320 | 0.1149 | 10.8 | — | RefineDet | VGG-16 | 512 × 512 | 0.1173 | 9.9 | 33.51 | CXR-RefineDet (ours) | RRNet | 320 × 320 | 0.1392 | 9.6 | — | CXR-RefineDet (ours) | RRNet | 512 × 512 | 0.1618 | 6.8 | 49.76 |
|
|