Research Article

Short-Axis PET Image Quality Improvement by Attention CycleGAN Using Total-Body PET

Table 2

Quantitative comparison on LQPET images from the scanner with 320 mm FOV.

DataMethodsNRMSEPSNR (dB)SSIM

bed1LQPET0.248 ± 0.2031.595 ± 4.670.915 ± 0.08
CycleAGAN0.219 ± 0.0934.003 ± 2.110.950 ± 0.03
CycleGAN0.340 ± 0.1931.263 ± 3.700.900 ± 0.07
Pix2Pix0.292 ± 0.1633.171 ± 4.490.931 ± 0.05
NLM0.303 ± 0.2434.309 ± 3.850.883 ± 0.06
BM3D0.244 ± 0.1334.525 ± 3.670.883 ± 0.06

bed2LQPET0.258 ± 0.1430.293 ± 5.280.910 ± 0.05
CycleAGAN0.222 ± 0.0630.228 ± 2.790.927 ± 0.02
CycleGAN0.241 ± 0.0931.284 ± 5.050.921 ± 0.03
Pix2Pix0.241 ± 0.1130.685 ± 3.630.918 ± 0.03
NLM0.258 ± 0.1431.454 ± 4.920.898 ± 0.03
BM3D0.241 ± 0.1031.972 ± 5.350.912 ± 0.05

bed3LQPET0.263 ± 0.1434.973 ± 8.130.948 ± 0.05
CycleAGAN0.257 ± 0.0736.065 ± 6.870.958 ± 0.02
CycleGAN0.271 ± 0.1436.286 ± 6.910.952 ± 0.03
Pix2Pix0.273 ± 0.1235.526 ± 8.300.949 ± 0.04
NLM0.276 ± 0.1435.319 ± 5.240.937 ± 0.04
BM3D0.300 ± 0.1736.315 ± 7.270.934 ± 0.04

Best results and methods are highlighted.