Research Article

Short-Axis PET Image Quality Improvement by Attention CycleGAN Using Total-Body PET

Table 3

Quantitative comparison of LQPET images from the scanner with 250 mm FOV.

DataMethodsNRMSEPSNR (dB)SSIM

bed1LQPET0.257 ± 0.2330.444 ± 4.220.886 ± 0.09
CycleAGAN0.225 ± 0.1231.975 ± 2.760.927 ± 0.04
CycleGAN0.332 ± 0.2128.726 ± 2.780.885 ± 0.05
Pix2Pix0.349 ± 0.2929.387 ± 2.820.892 ± 0.04
NLM0.305 ± 0.2931.063 ± 2.880.837 ± 0.06
BM3D0.242 ± 0.1331.160 ± 3.070.862 ± 0.04

bed2LQPET0.268 ± 0.2029.602 ± 4.270.874 ± 0.05
CycleAGAN0.205 ± 0.0929.920 ± 2.870.919 ± 0.03
CycleGAN0.218 ± 0.1030.919 ± 3.090.908 ± 0.03
Pix2Pix0.207 ± 0.0830.119 ± 2.810.906 ± 0.03
NLM0.273 ± 0.2129.708 ± 4.110.861 ± 0.04
BM3D0.211 ± 0.1030.106 ± 4.360.875 ± 0.05

bed3LQPET0.278 ± 0.1333.240 ± 5.400.899 ± 0.06
CycleAGAN0.258 ± 0.1033.892 ± 4.670.933 ± 0.03
CycleGAN0.265 ± 0.1034.365 ± 5.410.924 ± 0.03
Pix2Pix0.276 ± 0.1032.422 ± 6.190.920 ± 0.04
NLM0.271 ± 0.1433.872 ± 4.860.896 ± 0.04
BM3D0.256 ± 0.1134.154 ± 4.630.910 ± 0.03

Best results and methods are highlighted.