Research Article

Deep-Learning-Based Cancer Profiles Classification Using Gene Expression Data Profile

Table 4

Performance comparison from various algorithms.

PrecisionRecallF1-scoreSupport

Decision tree
00.380.500.436
10.880.810.8527
Accuracy0.760.33
Macro avg0.630.660.6433
Weighted avg0.790.760.7733
[[0.09 0.09]
[0.15 0.67]]

Random forest
00.000.000.006.
10.821.000.9027
Accuracy0.8233
Macro avg0.410.500.4533
Weighted avg0.670.820.7433
[[0. 0.18]
[0. 0.82]]

Gaussian naive bayes
01.000.170.296
10.841.000.9227
Accuracy0.8533
Macro avg0.920.580.633
Weighted avg0.870.850.8033
[[0.03 0.15]
[0. 0.82]]

Gradient descent (logistic)
00.620.830.713
10.960.890.9227
Accuracy0.8833
Macro avg0.790.860.8233
Weighted avg0.900.880.8933
[[0.15 0.03]
[0.09 0.73]]

Gradient descent (hinge)
00.000.000.006
10.821.000.9027
Accuracy0.8233
Macro avg0.410.500.4533
Weighted avg0.670.820.7423
[[0. 0.18]
[0. 0.82]]

Support vector machines
00.800.670.736
10.930.960.9527
Accuracy0.9133
Macro avg0.860.810.8433
Weighted avg0.910.910.9133
[[0.12 0.06]
[0.03 0.79]]

MLP (Adam)
00.181.000.316
10.000.000.0027
Accuracy0.1833
Macro avg0.090.500.1533
Weighted avg0.030.180.06333
[[0.18 0. ]
[0.82 0. ]]

MLP (LBFGS)
00.000.000.006
10.821.000.9027
Accuracy0.8233
Macro avg0.410.500.4533
Weighted avg0.670.820.7433
[[0. 0.18]
[0. 0.82]]