Review Article

Uses of Different Machine Learning Algorithms for Diagnosis of Dental Caries

Table 2

Characteristic table for the selected studies.

S. no.Author, year of publication, countryObjectiveAlgorithmLanguageDataset sizeAccuracy

1(1) DevitoTo diagnose proximal dental cariesHidden-layer perceptron with backpropagationEnglish160 X-dental radiograph88.4%
(2) de Souza Barbosa
(3) Filho (2008, Brazil)
2(1) MayankTo detect tooth caries in bitewing radiographsF-CNNEnglish300070%
(2) Pratyush Kumar
(3) Lalit Pradhan
(4) Srikrishna Varadarajan (2017, USA)
3(1) CasalegnoTo predict occlusal and proximal cariesCNNEnglish217 dental images(1) Occlusal = 83.6%
(2) Newton
(3) Daher(2) Proximal = 85.6%
(4) Abdelaziz A. Lodi-Rizzini
(5) F. Schürmann
(6) I. Krejci
(7) H. Markram (2018, Switzerland)
4(1) Jae-Hong LeeaTo evaluate the efficacy of deep CNN algorithms for detection and diagnosis of dental caries on periapical radiographsCNNEnglish3000 X-dental images(1) Molar = 89%
(2) Do-Hyung Kima
(3) Seong-Nyum Jeonga(1) Molar(2) Premolar = 88%
(4) Seong-Ho Choib(2018, Korea)(2) Premolar
(3) Both molar and premolar
(3) Both molar and premolar = 82%
5(1) Laura A. Zanella-CalzadaTo diagnose caries using socioeconomic and nutritional features as determinantsANNEnglish189 images69%
(2) Carlos E. Galván-Tejada
(3) Nubia M. Chávez-Lamas
(4) Jesús Rivas-Gutierre
(5) Rafael Magallanes-Quintanar
(6) Jose M. Celaya-Padilla
(7) Jorge I. Galván-Tejada
(8) Hamurabi Gamboa-Rosales (2018, Mexico)
6(1) K. MoutselosTo determine occlusal caries in dental intraoral imagesMASKEnglish88(1) MC = most common = 88.9%
(2) E. Berdouses(R-CNN)In-vitro dental images(2) CPC = center pixel class = 77.8%
(3) C. Oulis
(4) I. Maglogiannis (2019, Greece)(3) WC = worst class = 66.7%
7(1) Shashi Kant PatilTo evaluate accurate detection of caries using feature extraction and classification of the dental images along with amalgamation-adaptive dragonfly algorithm (DA) algorithm and neural network (NN) classifier(1) Adaptive dragonfly algorithm (ADA-NN)English120 dental imagesSummarizes the performance analysis of proposed ADA-NN classifier over the other conventional classifiers.
(2) Vaishali KulkarniTest case 1. Here, the accuracy of the proposed model is 5.55% better than KNN, SVM, NB and LM-NN.
(3) Archana Bhise (2019, India)(2) K-nearest neighbors (KNN)40 for each test caseTest case 2. ADA model is 11.76% and 52% superior to the existing models like KNN and SVM in terms of accuracy.
Test case 3. The accuracy of the proposed model is 6.30% better than SVM and NB classifier
(3) Support vector machine (SVM)
(4) Naive Bayes (NB)
(5) LM-NN
8(1) Syed JavedTo predict of post- Streptococcus mutans in dental cariesFeedforward backpropagationEnglish45 premolar teeth images99%
(2) M. ZakirullaANN
(3) Rahmath Ulla Baig(as it causes the dental caries)
(4) S.M. Asif
(5) Allah Baksh Meer (2019, Saudi Arabia)
9(1) Man HungApplication of machine learning for diagnostic prediction of root cariesSupport vector machine (SVM)English5,135From all the machine learning algorithms developed, support vector machine (SVM) demonstrated the best performance with an accuracy of 97.1%
(2) Maren W. Voss
(3) Megan N. RosalesRandom forest regression (RF)
(4) Wei Li
(5) Weicong Suk-nearest neighbors (k-NN)
(6) Julie Xu
(7) Jerry Bounsanga,Logistic regression
(8) Bianca Ruiz-Negrón Evelyn Lauren
(9) Frank W. Licari
(2019, Jordan)
10(1) Geetha K.To diagnose dental cariesBackpropagationEnglish10597.1%
(2) S. Aprameya
(3) Dharam
(4) M. Hinduja (2020, India)
11(1) Duc Long DuongAutomated caries detection with smartphone color photography using machine learningSupport vector machine (SVM)English620 unrestored molars/premolars92.37%
(2) Malitha Humayun Kabir
(3) Rong fu Kuo (2021, Taiwan)
12(1) J. KühnischCaries detection on intraoral images using artificial intelligenceConvolutional neural networks (CNNs)English2,417 peranent teeth93.3%
(2) O. Meyer(1,317 occlusal and 1,100 smooth surfaces)
(3) M. Hesenius
(4) R. Hickel1
(5) V. Gruhn (2022, Germany)