Research Article
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
Table 4
The results of different algorithms in the DRIVE dataset.
| Dataset | Methods | Year | Se (%) | Ac (%) | AUC (%) | F1-score (%) |
| DRIVE | R2U-Net [30] | 2018 | 77.92 | 95.56 | 97.84 | 81.71 | U-Net [30] | 2018 | 75.37 | 95.31 | 97.55 | 81.42 | LadderNet [31] | 2018 | 78.56 | 95.61 | 97.93 | 82.02 | DUNet [32] | 2019 | 78.94 | 96.97 | 98.56 | N/A | DEU-Net [33] | 2019 | 79.40 | 95.67 | 97.72 | 82.70 | AG-Net [34] | 2019 | 81.00 | 96.92 | 98.56 | N/A | IterNet [12] | 2019 | 77.35 | 95.73 | 98.16 | 82.05 | BCDU-Net [35] | 2019 | 80.07 | 95.60 | 97.89 | 82.24 | Tang et al. [36] | 2020 | 81.60 | 95.54 | 97.99 | N/A | Lü et al. [37] | 2020 | 80.62 | 95.47 | 97.39 | N/A | SA-UNet [38] | 2020 | 82.12 | 96.98 | 98.64 | 82.63 | Zhang et al. [13] | 2020 | 81.51 | 96.95 | 98.63 | N/A | RVSeg-Net [39] | 2020 | 81.07 | 96.81 | 98.17 | N/A | Proposed method | 2021 | 83.16 | 96.99 | 98.76 | 82.91 |
|
|