Research Article
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
Table 5
The results of different algorithms in the CHASE_DB1 dataset.
| Dataset | Methods | Year | Se (%) | Ac (%) | AUC (%) | F1-score (%) |
| CHASE_DB1 | R2U-Net [30] | 2018 | 77.92 | 95.56 | 97.84 | 81.71 | U-Net [30] | 2018 | 82.88 | 95.78 | 97.72 | 77.83 | LadderNet [31] | 2018 | 79.78 | 96.56 | 98.39 | 80.31 | DEU-Net [33] | 2019 | 80.74 | 96.61 | 98.12 | 80.37 | IterNet [12] | 2019 | 80.73 | 96.55 | 98.51 | 80.73 | AG-Net [34] | 2019 | 81.86 | 97.43 | 98.63 | N/A | Lü et al. [37] | 2020 | 81.35 | 96.17 | 97.82 | N/A | RVSeg-Net [39] | 2020 | 80.69 | 97.26 | 98.33 | N/A | Proposed method | 2021 | 81.49 | 97.51 | 99.01 | 83.55 |
|
|
The best values of Se, Ac, AUC, and F1-score are shown in bold.
|