Research Article
Multiresolution Mutual Assistance Network for Cardiac Magnetic Resonance Images Segmentation
Table 7
Comparison with state-of-the-art methods on the ACDC.
| ā | UNet [24] | Att-UNet [35] | UNet++ [36] | UNet3+ [37] | TransUNet [38] | Swin-UNet [39] | Ours |
| Dice | RV | 0.892 | 0.895 | 0.900 | 0.905 | 0.901 | 0.841 | 0.920 | Myo | 0.861 | 0.851 | 0.858 | 0.854 | 0.845 | 0.775 | 0.881 | LV | 0.939 | 0.940 | 0.936 | 0.947 | 0.942 | 0.909 | 0.960 |
| Specificity | RV | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 0.997 | 0.999 | Myo | 0.999 | 0.998 | 0.999 | 0.999 | 0.998 | 0.997 | 0.998 | LV | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
| Sensitivity | RV | 0.891 | 0.885 | 0.894 | 0.900 | 0.899 | 0.855 | 0.909 | Myo | 0.852 | 0.849 | 0.840 | 0.843 | 0.868 | 0.800 | 0.883 | LV | 0.929 | 0.928 | 0.931 | 0.939 | 0.950 | 0.894 | 0.953 |
| F1 | RV | 0.894 | 0.898 | 0.902 | 0.907 | 0.903 | 0.845 | 0.921 | Myo | 0.863 | 0.854 | 0.859 | 0.856 | 0.847 | 0.777 | 0.881 | LV | 0.941 | 0.942 | 0.939 | 0.949 | 0.945 | 0.910 | 0.960 |
|
|
The best performance is shown in bold.
|