Research Article
RETRACTED: An Innovative Machine Learning Approach for Classifying ECG Signals in Healthcare Devices
Table 2
Comparison of classification metrics.
| Rhythm | BDLSTM | Residual | LSTM-CNN | Proposed RBFNN | Class | R | P | S | F1 | R | P | S | F1 | R | P | S | F1 | R | P | S | F1 |
| Sinus rhythm | 0.82 | 0.83 | 0.94 | 0.84 | 0.64 | 0.88 | 0.86 | 0.76 | 0.79 | 0.80 | 0.95 | 0.79 | 0.85 | 0.87 | 0.96 | 0.89 | Artifact/noise | 0.88 | 0.82 | 0.94 | 0.83 | 0.89 | 0.97 | 0.94 | 0.82 | 0.81 | 0.83 | 0.94 | 0.81 | 0.89 | 0.85 | 0.92 | 0.84 | Ventricular tachycardia | 0.16 | 0.51 | 0.95 | 0.26 | 0.48 | 0.92 | 0.96 | 0.08 | 0.56 | 0.57 | 0.97 | 0.43 | 0.55 | 0.34 | 0.94 | 0.67 | Atrial fibrillation | 0.81 | 0.83 | 0.94 | 0.82 | 0.78 | 0.93 | 0.92 | 0.76 | 0.73 | 0.69 | 0.89 | 0.84 | 0.88 | 0.81 | 0.97 | 0.81 | Bigeminy | 0.72 | 0.65 | 0.82 | 0.67 | 0.89 | 0.98 | 0.98 | 0.16 | 0.67 | 0.67 | 0.96 | 0.55 | 0.84 | 0.83 | 0.91 | 0.80 | PVC | 0.78 | 0.76 | 0.88 | 0.76 | 0.78 | 0.93 | 0.93 | 0.83 | 0.79 | 0.77 | 0.92 | 0.72 | 0.81 | 0.82 | 0.95 | 0.89 |
|
|