Research Article
Multiparametric Magnetic Resonance Imaging Information Fusion Using Graph Convolutional Network for Glioma Grading
Table 2
Demonstration of the context information fusion method based on graph convolution and 3D convolution.
| Dataset | Method | T1CE | T1 | T2 | FLAIR | AUC | ACC | AUC | ACC | AUC | ACC | AUC | ACC |
| BraTS2020 | 2D-ResNet | 0.932 | 0.907 | 0.896 | 0.840 | 0.849 | 0.840 | 0.894 | 0.853 | 3D-ResNet | 0.939 | 0.920 | 0.905 | 0.853 | 0.860 | 0.880 | 0.853 | 0.867 | G-2D-ResNet | 0.946 | 0.920 | 0.906 | 0.853 | 0.873 | 0.880 | 0.908 | 0.867 |
| GliomaHPPH2018 | 2D-ResNet | 0.842 | 0.787 | 0.921 | 0.894 | 0.729 | 0.745 | 0.931 | 0.872 | 3D-ResNet | 0.844 | 0.809 | 0.960 | 0.894 | 0.750 | 0.766 | 0.923 | 0.872 | G-2D-ResNet | 0.900 | 0.830 | 0.962 | 0.915 | 0.813 | 0.787 | 0.942 | 0.894 |
|
|