Research Article
Optimal Deep Learning Enabled Prostate Cancer Detection Using Microarray Gene Expression
Table 1
Result analysis of optimal DNN model
| No. of iterations | Sensitivity | Specificity | Precision | Accuracy | F-score |
| Iteration 1 | 96.30 | 95.56 | 96.67 | 96.64 | 96.32 | Iteration 2 | 96.20 | 96.46 | 96.57 | 96.50 | 96.97 | Iteration 3 | 95.82 | 96.64 | 96.55 | 95.99 | 95.95 | Iteration 4 | 96.13 | 96.34 | 96.15 | 96.19 | 96.19 | Iteration 5 | 96.25 | 95.66 | 96.75 | 96.51 | 95.63 | Iteration 6 | 95.59 | 95.63 | 96.55 | 95.86 | 95.53 | Iteration 7 | 95.92 | 96.04 | 96.11 | 95.99 | 96.04 | Iteration 8 | 95.56 | 96.88 | 96.34 | 95.72 | 96.43 | Iteration 9 | 96.17 | 95.57 | 96.53 | 96.31 | 96.27 | Iteration 10 | 96.44 | 96.18 | 96.15 | 96.38 | 96.05 | Average | 96.04 | 96.10 | 96.44 | 96.21 | 96.14 |
|
|