Research Article

Comparison of Different Machine Learning Techniques to Predict Diabetic Kidney Disease

Table 1

Comparison of different classifiers applied on the DKD dataset.

ClassifierExecution time (seconds)Accuracy (%)Correctly classified instancesIncorrectly classified instances

IBK093.658538426
Random tree0.0193.658538426
Random forest0.2893.414638327
Multilayer perceptron8.393.170738228
J480.1389.756136842
Hoeffding tree0.0486.097635357
REP tree0.0885.12234961
Naïve bayes0.0180.975633278
AdaBoostM10.1179.024432486