Research Article
Comparison of Different Machine Learning Techniques to Predict Diabetic Kidney Disease
Table 1
Comparison of different classifiers applied on the DKD dataset.
| Classifier | Execution time (seconds) | Accuracy (%) | Correctly classified instances | Incorrectly classified instances |
| IBK | 0 | 93.6585 | 384 | 26 | Random tree | 0.01 | 93.6585 | 384 | 26 | Random forest | 0.28 | 93.4146 | 383 | 27 | Multilayer perceptron | 8.3 | 93.1707 | 382 | 28 | J48 | 0.13 | 89.7561 | 368 | 42 | Hoeffding tree | 0.04 | 86.0976 | 353 | 57 | REP tree | 0.08 | 85.122 | 349 | 61 | Naïve bayes | 0.01 | 80.9756 | 332 | 78 | AdaBoostM1 | 0.11 | 79.0244 | 324 | 86 |
|
|