Research Article
Comparison of Different Machine Learning Techniques to Predict Diabetic Kidney Disease
Table 2
Classification results from WEKA.
| Classifier | Kappa statistics (K) | Mean absolute error (MAE) | Root mean squared error (RMSE) |
| IBK | 0.8731 | 0.1096 | 0.2496 | Random tree | 0.8731 | 0.1093 | 0.2497 | Random forest | 0.8681 | 0.1267 | 0.2542 | Multilayer perceptron | 0.8633 | 0.1117 | 0.2513 | J48 | 0.7947 | 0.1595 | 0.3074 | Hoeffding tree | 0.7223 | 0.1389 | 0.3696 | REP tree | 0.7025 | 0.2194 | 0.3565 | Naïve bayes | 0.6199 | 0.1899 | 0.4261 | AdaBoostM1 | 0.5827 | 0.3246 | 0.4009 |
|
|