Research Article

Automatic Detection of Horner Syndrome by Using Facial Images

Table 2

The optimal hyperparameters of machine learning classifiers.

ModelsHyperparameters

Decision tree{Max depth: 3, max leaf nodes: 4, min samples leaf: 5, and min samples split: 165}
K-neighbors{n neighbors: 30}
XgBoost{Learning rate: 0.01, max depth: 3, n estimators: 100, and subsample: 0.3}
Gradient boosting{Learning rate: 0.05, max depth: 1, n estimators: 30, and subsample: 0.3}
Logistic regression{C: 0.1, l1 ratio: 0.01, max iter: 10000, and solver: Liblinear}
Support vector classifier{C: 0.5, degree: 1, kernel: “Linear”}
Light GBM{Learning rate: 0.2, max depth: 3, n estimators: 15, and subsample: 0.3}
Random forest{Max depth = 2, max features = 3, and n estimators = 5}
AdaBoost{Learning rate: 0.2, n estimators: 20}
Bernoulli naïve bayes{Default}