Research Article
On the Use of Wavelet Domain and Machine Learning for the Analysis of Epileptic Seizure Detection from EEG Signals
Table 6
Comparison with the existing state of the art.
| | References | Year | Methods | Cases | CA (%) |
| | [30] | 2006 | DWT adaptive neurofuzzy network | AD-E | 85.9 | | [31] | 2009 | DWT + ApEn and surrogate data analysis | ACD-E | 96.65 | | [18] | 2010 | Line length feature and ANN | A-E | 99.6 | | ACD-E | 97.75 | | ABCD-E | 97.5 | | [20] | 2011 | Statistical features from DWT + kNN classifier | A-E | 100.0 | | AB-CD-E | 95.6 | | [21] | 2012 | Permutation entropy + SVM | A-E | 100.0 | | B-E | 82.88 | | C-E | 88.0 | | D-E | 79.94 | | [32] | 2012 | Statistical features from DWT + PCA + ANN classifier | A-E | 100.0 | | [17] | 2012 | ApEp + SampEp + phase entropy 1 + phase entropy 2-Fuzzy Sugeno classifier | AB-CD-E | 98.1 | | [29] | 2013 | DWT + permutation and sample entropy + Hurst exponent + genetic algorithm + extreme learning machine (ELM) | A-E | 94.8 | | [34] | 2013 | DWT + Hurst and Lyapunov exponent | B-E | 96.5 | | [24] | 2014 | Dual-tree complex wavelet transform + kNN transform | A-E | 100.0 | | CD-E | 100.0 | | ABCD-E | 100.0 | | [25] | 2015 | Empirical mode decomposition-based temporal spectral features + SVM | A-E | 100.0 | | [26] | 2015 | DTCWT + complex-valued neural network | AB-CD-E | 98.28 | | [33] | 2016 | DTCWT + general regression neural network | A-E | 100.0 | | B-E | 98.9 | | C-E | 98.7 | | D-E | 93.3 | | AB-E | 99.2 | | [28] | 2016 | Key-point based local binary pattern of EEG signals | CD-E | 99.45 | | AB-CD-E | 98.8 | | [35] | 2017 | Tunable-Q wavelet transform + kNN entropy + SVM | AB-CD-E | 98.6 | | [4] | 2016 | DWT – MVP + SD + AVP – NB/kNN classifier | A-E | 100.0 | | B-E | 99.25 | | C-E | 99.5 | | D-E | 95.62 | | AB-E | 99.16 | | AC-E | 99.5 | | AD-E | 97.08 | | BC-E | 98.25 | | BD-E | 96.5 | | CD-E | 98.75 | | ABC-E | 98.68 | | ACD-E | 97.31 | | BCD-E | 97.72 | | ABCD-E | 97.1 | | [36] | 2018 | CNN | AB-CD-E | 88.67 | | [37] | 2018 | CNN | A-E | 100 | | B-E | 99.8 | | C-E | 99.1 | | D-E | 99.4 | | AB-E | 99.8 | | AC-E | 99.7 | | BC-E | 99.5 | | BD-E | 99.6 | | CD-E | 99.7 | | ABC-E | 99.97 | | ACD-E | 99.8 | | BCD-E | 99.3 | | ABCD-E | 99.7 | | AB-CD | 99.9 | | AB-CD-E | 99.1 | | AB-CDE | 99.7 | | This work (University of Bonn dataset) | 2020 | DWT + SVM/KNN/NB/DT | A-E | 100.0 | | B-E | 100.0 | | C-E | 100.0 | | D-E | 97.5 | | AB-E | 100.0 | | AC-E | 98.67 | | AD-E | 98.0 | | BC-E | 98.67 | | BD-E | 96.33 | | CD-E | 98.0 | | ABC-E | 99.0 | | ABD-E | 97.0 | | ACD-E | 98.25 | | BCD-E | 97.0 | | ABCD-E | 100.0 | | AB-CD | 82.5 | | AB-CD-E | 95.0 | | This work (real-time clinical dataset) | 2020 | DWT + SVM/KNN/NB/DT | Healthy- epileptic patient | 91.67 |
|
|