Research Article
[Retracted] Optimization and Evaluation of an Intelligent Short-Term Blood Glucose Prediction Model Based on Noninvasive Monitoring and Deep Learning Techniques
Figure 12
Clarke grid errors of the optimized deep learning models with CEEMDAN in 30 min prediction. (a) IBFO-GRU: area A: 96.2% and B: 3.8%. (b) IBFO-LSTM: area A: 93.6% and B: 6.4%. (c) IBFO-RNN: area A: 91.2% and B: 8.8%. (d) IBFO-GRU: area A: 91.3% and B: 8.7%. (e) IBFO-LSTM: area A: 90.9% and B: 9.1%. (f) IBFO-RNN: area A: 88.6% and B: 11.4%. (g) IBFO-GRU: area A: 91.8% and B: 8.2%. (h) IBFO-LSTM: area A: 90.2% and B: 9.8%. (i) IBFO-RNN: area A: 89.6% and B: 10.4%.
(a) |
(b) |
(c) |
(d) |
(e) |
(f) |
(g) |
(h) |
(i) |