Research Article

Epileptic Seizure Detection Using a Hybrid 1D CNN-Machine Learning Approach from EEG Data

Table 6

Comparison of previous studies conducted for epilepsy detection.

StudyFeatures extractionClassification methodDatasetsClassesAccuracy (%)

[1]Chebyshev IIR filter, discrete wavelet transformSVMBonn296
ANN98
[3]NoneCNNBonn299.52
396.97
593.55
[4]NoneCNNBonn388.67
[6]Empirical mode decomposition (EMD), intrinsic mode function (IMF)Classification and regression tree (CART)Bonn393.55
[7]Recurrence quantification analysis (RQA)SVMBonn395.60
[8]Channel selection and statistical feature extractionEnsembleCHB-MIT289.02%
[9]Tunable-Q wavelet transform (TQWT)Random Forest (RF)Bonn399
[10]Multiscale PCA, wavelet packet decompositionSVMBonn399.70
[11]Discrete wavelet transform, temporal and spectral featuresFuzzy roughCHB-MIT292.79%
Nearest neighbor
[12]None1D-pyramidal CNNBonn399.1
[13]None1D-feature fusion CNNBonn398.67
[14]CWTCNNBonn2100
399
491.50
593.60
[44]Time-frequency analysis (TFA)ANNBonn2100
589
[45]Symplectic geometry eigenvaluesSVMCHB-MIT299.62
[46]Adaptive-rate FIR filtering and DWT + MI-based feature selectionEnsemble of MLP, k-NN, SVM, BG, and RFBonn2100
399.50
496
592
CHB-MIT299.38
Our approachCNNML classifiersBonn2100
399.33
496
594
CHB-MIT297.1