Research Article
Machine Learning-Based Prediction Model of Preterm Birth Using Electronic Health Record
Table 4
The top 20 importance variables of RF model.
| Variables | Decreased accuracy |
| Age (physical examination) | 0.0251 | Magnesium (blood test) | 0.0098 | Fundal height (physical examination) | 0.0077 | Serum inorganic phosphorus (blood test) | 0.0038 | Mean platelet volume (blood test) | 0.0038 | Waist size (physical examination) | 0.0038 | Total cholesterol (blood test) | 0.0035 | Triglycerides (blood test) | 0.0031 | Globulins (blood test) | 0.0024 | Total bilirubin (blood test) | 0.0024 | Neutrophil granulocytes (blood test) | 0.0024 | Red blood cell distribution width-SD (blood test) | 0.0024 | Bacterial vaginosis (gynecological examination) | 0.0021 | Urine bilirubin (urine test strip) | 0.0021 | Urine white blood cell (urine test strip) | 0.0021 | Diastolic blood pressure (physical examination) | 0.0014 | Blood group (blood test) | 0.0014 | Parity (physical examination) | 0.0014 | Eosinophil granulocytes (blood test) | 0.0010 | White blood cell count (blood test) | 0.0010 |
|
|
RF: Random Forest tree.
|