Journal of Healthcare Engineering / 2023 / Article / Tab 9 / Research Article
Hematologic Cancer Detection Using White Blood Cancerous Cells Empowered with Transfer Learning and Image Processing Table 9 Statistical matrix test results of blood cancer prediction after image processing (this depicts the statistical results of all models performed in the current study).
AlexNet Stochastic gradient descent moment (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 97.3 96.51 98.76 0.60 3.49 160.10 0.04 97.63 97.62 98.28 99.40 2.7 Adaptive moment estimation (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 93.07 90.47 95.87 1.94 9.53 46.58 0.10 93.13 93.09 95.37 98.06 6.03 Root mean square propagation (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 93.02 95.84 91.54 4.42 4.16 21.68 0.04 93.66 93.64 97.87 95.58 6.08 MobileNet Stochastic gradient descent moment (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 60.5 91.01 88.77 6.12 8.99 14.86 0.10 89.58 89.56 95.42 93.88 39.5 Adaptive moment estimation (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 63.0 90.74 98.83 0.54 9.26 46.55 0.09 94.70 94.61 95.42 99.46 37.0 Root mean square propagation (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 64.09 97.85 96.43 1.82 2.15 53.86 0.02 97.14 97.14 98.92 98.18 35.01 ResNet Stochastic gradient descent moment (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 66.2 96.24 99.86 0.07 3.76 30.15 0.04 98.03 98.02 98.92 99.93 83.8 Adaptive moment estimation (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 66.5 59.55 88.04 6.31 40.45 9.43 0.43 72.40 71.04 98.92 93.69 33.5 Root mean square propagation (%) CA Sen PPV FPR FNR LPR LNR FMI F1 NPV Spec MCR 65.6 59.28 87.92 6.34 40.72 9.35 0.43 72.20 70.82 98.92 93.66 34.4