Research Article

Atrial Fibrillation Detection with Low Signal-to-Noise Ratio Data Using Artificial Features and Abstract Features

Table 7

Comparison of classification results.

AuthorYearDatabaseFeature extractionTaskMethodAccF1pF1

Datta et al. [6]2017CinC 2017 AF DBHRV, frequency domain, and statistical features4-ClassMultilayer cascaded binary classifiers0.830
Cao et al. [23]2020CinC 2017 AF DBAbstract features3-Class2-Layer LSTM0.8440.827
Zabihi et al. [32]2017CinC 2017 AF DBTime domain, frequency domain, time-frequency domain, and nonlinear features4-ClassRandom forest0.5040.830
Kropf et al. [33]2017CinC 2017 AF DBTime-domain and frequency-domain features4-ClassRandom forest0.6480.830
Wang et al. [35]2020CinC 2017 AF DBAbstract features3-ClassDMSFNet0.841
Gao et al. [36]2021CinC 2017 AF DBAbstract features3-ClassRTA-CNN0.851
Mahajan et al. [37]2017CinC 2017 AF DBTime domain, frequency domain, linear, and nonlinear features4-ClassRandom forest0.780
Xiong et al. [38]2017CinC 2017 AF DBAbstract features4-ClassCNN0.820
Zihlmann et al. [39]2017CinC 2017 AF DBAbstract features4-ClassCNN + LSTM0.8230.6450.820
Gliner and Yanav [28]2018CinC 2017 AF DBTime-frequency domain, statistical features, and morphological features4-ClassSVM0.800
Athif et al. [40]2018CinC 2017 AF DBStatistical features and morphological features4-ClassSVM0.780
Chen et al. [41]2018CinC 2017 AF DBMorphological features and heart rate variability features4-ClassXGBoost0.810
This work2022CinC 2017 AF DBTime domain, interval, frequency domain, and nonlinear features and abstract features4-ClassFusion features + random forest0.8570.7350.837