Research Article
MCFN: A Multichannel Fusion Network for Sleep Apnea Syndrome Detection
Table 3
Performance comparison between MCFN and existing methods.
| | Signals | Methods | Patients | Classify | Accuracy (%) |
| Gutiérrez et al. [15] | Flow | AdaBoost | 317 | Apnea/normal | 86.5 | Lin et al. [13] | Flow, Abdo. Thor. | SVM | 34 | OSA/CSA/hypopnea | 81.8 | Jiménez et al. [16] | Flow, SpO2 | AdaBoost | 974 | OSA/normal | 81.3 | Haidar et al. [23] | Flow, Abdo. Thor. | CNN | 2056 | OSA/hypopnea/normal | 83.4 | Van Steenkiste et al. [26] | Abdo. Thor. EDR | LSTM | 2100 | Apnea/normal | 77.2 | Elmoaqet et al. [27] | Flow, Abdo. NPRE | LSTM/Bi-LSTM | 17 | OSA/CSA/MSA | 83.6 | Barroso et al. [31] | Flow, ODI3 | MLP | 946 | Apnea/normal | 82.5 | Yu et al. [32] | EEG, flow, Abdo. | LSTM_CNN | 126 | Normal/hypopnea/OSA/MSA | 83.9 | Ours | Flow, Abdo. Thor. | MCFN | 2056 | OSA/Hypopnea/normal | 87.3 |
|
|