Research Article

Development and Validation of Deep Learning Models for the Multiclassification of Reflux Esophagitis Based on the Los Angeles Classification

Table 1

Performance metrics of models and endoscopists.

ModelsAccuracyMatthew’s correlation coefficientCohen’s kappa

Validation dataset
MobileNet0.9160.8590.820
ResNet0.9310.8840.850
Xception0.9380.8960.860
EfficientNet0.9620.9360.910
ViT0.9330.8880.850
ConvMixer0.9500.9160.890

Test dataset
MobileNet0.9160.8210.780
ResNet0.9330.8460.810
Xception0.9360.8520.810
EfficientNet0.9570.8840.850
ViT0.9380.8540.820
ConvMixer0.9430.8610.820
Junior endoscopist0.9160.8200.780
Senior endoscopist0.9450.8640.830

The bold figures indicate the highest numeric values.