Journal of Healthcare Engineering / 2023 / Article / Tab 5 / Research Article
Extracting a Novel Emotional EEG Topographic Map Based on a Stacked Autoencoder Network Table 5 Accuracy of SVM, BN, KNN, CapsNet, and CNN networks in image classification by ten features, including subband power, mean, standard deviation, zero-crossing rate, fractal dimension, entropy, and correlation dimension.
Classifiers Features Power theta Power alpha Power beta Power gamma Mean Standard deviation Zero-crossingrate Fractal dimension Approximate entropy Correlation dimension SAETM SVM 0.5132 ± 0.02 0.5818 ± 0.01 0.4363 ± 0.06 0.5527 ± 0.01 0.3280 ± 0.13 0.3620 ± 0.02 0.4750 ± 0.12 0.5145 ± 0.03 0.4239 ± 0.05 0.3840 ± 0.01 0.7536 ± 0.01 BN 0.4746 ± 0.13 0.5373 ± 0.02 0.5248 ± 0.05 0.4323 ± 0.01 0.4129 ± 0.01 0.3359 ± 0.01 0.3984 ± 0.03 0.4719 ± 0.11 0.3487 ± 0.15 0.4602 ± 0.04 0.6906 ± 0.12 KNN 0.5601 ± 0.02 0.4982 ± 0.12 0.4880 ± 0.05 0.3760 ± 0.05 0.3717 ± 0.01 0.3129 ± 0.04 0.4573 ± 0.04 0.3985 ± 0.03 0.4604 ± 0.04 0.4228 ± 0.02 0.7158 ± 0.04 CNN 0.6534 ± 0.03 0.6710 ± 0.04 0.5730 ± 0.07 0.5915 ± 0.04 0.4872 ± 0.06 0.3916 ± 0.01 0.4716 ± 0.02 0.5610 ± 0.04 0.5201 ± 0.07 0.5072 ± 0.12 0.8305 ± 0.02 CapsNet 0.6721 ± 0.06 0.6430 ± 0.11 0.5928 ± 0.02 0.6592 ± 0.07 0.5340 ± 0.16 0.4924 ± 0.12 0.5935 ± 0.04 0.6026 ± 0.15 0.5873 ± 0.02 0.6453 ± 0.13 0.8159 ± 0.01 Average (ACC) 0.5747 ± 0.052 0.5863 ± 0.06 0.5230 ± 0.05 0.5223 ± 0.036 0.4268 ± 0.074 0.3790 ± 0.04 0.4792 ± 0.05 0.5097 ± 0.072 0.4681 ± 0.066 0.4839 ± 0.064 0.7613 ± 0.04