Research Article
Extracting a Novel Emotional EEG Topographic Map Based on a Stacked Autoencoder Network
Table 6
CNN network accuracy in image classification after 10 minutes for SAETM features and ten other features.
| Time (m) | Features | Power theta | Power alpha | Power beta | Power gamma | Mean | Standard deviation | Zero-crossingrate | Fractal dimension | Approximate entropy | Correlation dimension | SAETM |
| 1 | 0.4281 | 0.4323 | 0.4303 | 0.4183 | 0.4065 | 0.3619 | 0.4003 | 0.4549 | 0.4426 | 0.4273 | 0.4874 | 2 | 0.4170 | 0.4382 | 0.4580 | 0.4089 | 0.4103 | 0.3547 | 0.4097 | 0.4609 | 0.4432 | 0.4175 | 0.4787 | 3 | 0.4295 | 0.4693 | 0.4531 | 0.4198 | 0.4074 | 0.3683 | 0.4162 | 0.4656 | 0.4594 | 0.4145 | 0.5996 | 4 | 0.4536 | 0.4726 | 0.4854 | 0.4186 | 0.4238 | 0.3605 | 0.4229 | 0.4768 | 0.4529 | 0.4291 | 0.6491 | 5 | 0.4609 | 0.4812 | 0.4930 | 0.4347 | 0.4239 | 0.4038 | 0.4140 | 0.4611 | 0.4535 | 0.4043 | 0.7752 | 6 | 0.4729 | 0.4983 | 0.5034 | 0.4279 | 0.4158 | 0.3794 | 0.4371 | 0.4662 | 0.4485 | 0.4296 | 0.7923 | 7 | 0.4582 | 0.4978 | 0.5012 | 0.4376 | 0.4283 | 0.3775 | 0.4395 | 0.4693 | 0.4526 | 0.4352 | 0.8164 | 8 | 0.4901 | 0.5391 | 0.5078 | 0.4594 | 0.4192 | 0.3738 | 0.4588 | 0.4738 | 0.4594 | 0.4808 | 0.8283 | 9 | 0.5865 | 0.6449 | 0.5539 | 0.5523 | 0.4763 | 0.3875 | 0.4521 | 0.5532 | 0.4820 | 0.4986 | 0.8298 | 10 | 0.6534 | 0.6710 | 0.5730 | 0.5915 | 0.4872 | 0.3916 | 0.4716 | 0.5610 | 0.5201 | 0.5072 | 0.8305 |
|
|