Research Article

A Fixed Point Theorem for Monotone Maps and Its Applications to Nonlinear Matrix Equations

Algorithm 1

Gaofixedpoint.m
function  [X, counter, err]=Gaofixedpoint(A, Q, C, k, q, errtol)
% Solving X = kQ + A(Xhat − C)qA, with Xhat = kronecker(I,X)
% Input: matrices  , , , k > 1, 0 < q < 1, errtol
% Output: solution  , iteration counter,  final equation relative error
m, n = size (A); [p, w] = size (Q); [r, s] = size (C); % Input size etc checks
if floor (m/n) ~= m/n n ~= p n ~= w r ~= m s ~= m k
  <= 1 … q <= 0 q>= 1,
  error (’incompatible inputs’),
  return,
end
I = eye (m/n); X = kQ; counter = 0; err = 10000;  % Initialize
while err >= errtol Iterate
 X = kQ + A’(kron(I, X) − C)qA; update X
 S = X − kQ − A’(kron(I, X) − C)qA; form error matrix S
 err = norm(S, 1)/norm(X, 1); relative iteration error
 counter = counter + 1; Iteration counter
end
X = (X + X’)/2; make sure X is symmetric
S = X − kQ − A’(kron(I, X) − C)qA; form final error matrix S
err = norm(S, 1)/norm(X, 1);