Research Article

Using Artificial Intelligence to Predict Customer Satisfaction with E-Payment Systems during the COVID-19 Pandemic

Table 5

The OLS, fixed effect, and random effect.

EffectsDep. var.Indep. var.OLSFixed effectRandom effect
BS.Et-statBS.EZBS.EZ

IndirectIntercept1.3800.07817.740.1150.0205.6371.3470.07717.522
SE0.0820.0145.8610.1190.0225.5090.0890.0146.449
CT0.1350.0158.8950.1580.0285.6210.1310.0158.802
EPPV0.2300.01812.650.2740.02411.580.2210.01812.245
AT0.2100.01612.980.1320.0235.6690.2210.01613.917
CR0.0970.0175.5720.1150.0205.6370.1010.0176.034
R-square0.6390.7310.714
F-stat.346.5204.61845.7
Intercept0.9450.1715.5180.9450.1715.518
CSEP0.7020.03818.540.6300.0659.7640.7020.03818.540
R-square0.2600.2010.260
F-stat.343.795.3343.7

Direct
Intercept0.2530.1182.1380.2530.1182.138
SE−0.0090.021−0.408−0.0540.037−1.471−0.0090.021−0.408
CT0.1570.0236.8180.1750.0394.5230.1570.0236.818
CSPV0.2610.0289.4710.2600.0505.1690.2610.0289.471
AT0.0310.0251.2650.0810.0421.9190.0310.0251.265
CR0.4710.02617.850.5140.04212.320.4710.02617.850
R-square0.5620.5630.562
F-stat.250.596.91252.4

Signif. codes: “” 0.01 “” 0.05 “” 0.1.